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Is Volatility the Appropriate Risk Measure for Direct Real Estate? 

 

Introduction 

 

Since the development of Modern Portfolio Theory (MPT) volatility has become the standard 

measure of risk for any kind of investment.  For a long time this concept was widely accepted 

by both academics and practitioners in securities markets.  However, almost from the begin-

ning doubts were raised as to the appropriateness of volatility (or annualised standard devia-

tion) as the measure for risk in the direct real estate market
1
.  In particular, Webb and Pagliari 

(1995) identified various reasons why volatility as a risk measure for real estate should be 

seen with some scepticism: (1) the poor quality of the direct real estate data, (2) the cyclicality 

of real estate returns, (3) high transaction costs, and (4) appraisal based returns which lead to 

unrealistic volatility values for direct real estate compared with stocks and bonds.  In addition, 

recent studies have provided evidence that real estate returns are not normally distributed 

which invalidates the standard deviation as an appropriate measure of risk (see, King and 

Young, 1994; Young and Graff, 1995; Graff et al., 1997; Brown and Matysiak, 2000; Maurer 

et al., 2004; Young et al., 2006; Morawski and Rehkugler, 2006, Young, 2008, and Richter et 

al., 2011, among others).   

 

Nonetheless, whilst academics are aware that standard deviation is not an appropriate for di-

rect real estate many still use the volatility as their measure of risk anyway (see, Staley et al., 

2008; Cheng and Roulac, 2007; Heydenreich, 2010; Cheng et al., 2010; and Kaiser and Clay-

ton, 2008), Lee, 2003; Lee and Stevenson, 2006; Hoesli et al., 2004; and Pagliari and Scherer, 

2005, among others).  This is not the case for real estate practitioners.  For instance, in a sur-

vey of 180 major German real estate companies (housing companies, commercial real estate 

investors, corporates, and others), Schwenzer (2008), found that only 35% of all respondents 

use the standard deviation as a risk measure, with the vast majority of real estate managers 

employing qualitative measures instead.  In the UK, Booth et al. (2002) and Frodsham (2007) 

found that most real estate fund and investment managers use qualitative risk measures.  In a 

similar vein, Dhar and Goetzmann (2005) found that US investors were more concerned about 

the uncertainty of input data in an investment decision model rather than with the properties’ 

volatility.   

 

Given the importance of the debate as to whether volatility is an appropriate risk measure for 

direct real estate this paper examines the issue from a theoretical and empirical perspective 

and contributes to the literature in a number of ways.  First, we examine whether volatility is 

an acceptable, or a coherent, measure of risk by examining whether it satisfies the axioms of 

Artzner et al. (1999).  Second we use the categorisation of Webb and Pagliari (1995) to see if 

the assumptions on which volatility is based, to be an acceptable measure of risk, apply in a 

direct real estate market.  Next, we test empirically whether individual and market data in the 

German direct real estate is normally distributed.  Lastly we identify the distribution shape of 

the individual and market data.      

 

The remainder of our paper is structured as follows.  The next section will examine whether 

volatility can theoretically be seen as an appropriate risk measure.  Section 3 reviews the con-

ditions needed for standard deviation to be acceptable as a measure of risk in the direct real 

estate context.  The next section presents the results of normality tests on a large sample of 

individual and index data in the German direct real estate market.  The last section concludes 

                                                           

1
 See for example, Cook (1971) and Findlay et al. (1979). 
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the study and questions whether qualitative risk measures might be more appropriate to esti-

mate future real estate risk and suggest some requirements regarding more appropriate risk 

measures.  

 

The Appropriateness of Volatility from a Theoretical Viewpoint 
 

To assess the appropriateness of risk measures, several authors have developed a set of axi-

oms that a well-behaved risk measure should satisfy2.  One that is widely used in the literature 

was defined by Artzner et al. (1999).  The authors consider a risk measure acceptable, or co-

herent, if it satisfies four specific axioms: subadditivity, homogeneity, translation invariance, 

and monotonicity.  Subadditivity in this context means that the risk of a portfolio should not 

exceed the sum of the individual risks.  A risk measure satisfies the axiom of homogeneity if 

the risk increases proportionally with the invested capital in a risky investment.  Translation 

invariance means that investing capital in a risk free investment reduces the risk of the portfo-

lio by the additionally invested risk-free amount; therefore less capital is needed to cover the 

risk.  Monotonicity finally means that if a random variable X, under all scenarios, has better 

values than a random variable Y, the risk of X should be less than the risk of Y. 

 

Volatility satisfies the basic properties of subadditivity and positive homogeneity.  However, it 

does not satisfy the axiom of monotonicity (Tihiletti, 2006).  Bradley and Taqqu (2003) also 

suggest that volatility fails to satisfy translation invariance because the volatility measure does 

not decrease when an additional amount is prudently invested.  Therefore, according to 

Artzner et al. (1999), volatility cannot be considered an appropriate risk measure.  Nonethe-

less, if an investor defines risk as the deviation of returns from an expected return, volatility is 

indeed appropriate, according to Pedersen and Satchell (1998). 

 

The Appropriateness of Volatility from an Empirical Viewpoint 
 

This section deals with the question whether the assumptions on which the use of volatility is 

based, do apply in a real estate context—using the categorisation of Webb and Pagliari 

(1995): the existence of a significant data base, the efficiency of the real estate market, inves-

tors’ understanding of risk as the variation of returns, and the normally distributed returns. 

 

Significant data base 
 

An important preposition regarding the appropriateness of volatility as a risk measure for real 

estate is that the data is sufficient in terms of quality as well as quantity. However, this is often 

doubted, both for the individual property level and for the portfolio and index level.  In this 

context it is frequently argued that historical return series are not long enough to serve as a 

basis for risk estimations.3  

 

Another problem with the real estate return data that does exist is its accuracy.  A problem that 

occurs when appraisal-based data is used as a proxy for the property’s value is the so-called 

appraisal smoothing effect.  According to Geltner (1993), this smoothing effect is “due to the 

combined effects of appraisers’ partial adjustments at the disaggregate level plus temporal 

aggregation in the construction of the index at the aggregate level”, which results in appraisers 

                                                           

2
 See, for example, Kijima and Ohnishi (1993), Bell (1995), Pedersen and Satchell (1998), and Rockafellar et al. 

(2002). 
3
 See, for example, Wheaton et al. (2002), Coleman and Mansour (2005), Ducoulombier (2007). 
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failing to fully capture the actual movement of the property value.4  Therefore, the fluctuation 

in the property’s value is likely to understate the volatility of real estate.   

 

To solve the problem of the smoothing effect, two alternatives are discussed in the literature, 

either de-smooth the appraisal based data or use a transaction-based real estate index, both of 

which are not without their problems.  De-smoothing techniques typically use smoothing-

factors which express the ratio of volatility of de-smoothed return data compared to the vola-

tility of original appraisal-based data.5  However, no model to de-smooth the appraisal-based 

data is perfect, and the calculated smoothing factors depend on both the chosen model and its 

calibration.6  And transaction based indexes are problematic as well due to a limited and time-

varying number of data points.7   

 

Market efficiency  
 

The next assumption for using the volatility as a proxy for real estate risk is that real estate 

markets are efficient and that returns follow a random-walk.  This further implies that it is not 

possible to forecast risk and return.  If however real estate returns do not follow a random-

walk but are predictable, it would be inappropriate to use historical volatility as a risk meas-

ure. In fact, risk and return characteristics should be forecasted and the use of historical data 

should be avoided.   

 

However, there is ample evidence that direct real estate markets are, at best, weak form effi-

cient.8  The reason is in the nature of real estate markets that “are typically characterized by 

high transaction costs, low turnover volumes, carrying costs, specific tax issues, asymmetric 

information, and unstandardised heterogeneous commodities, compared in particular to assets 

on financial markets” (Schindler, 2010).  As a consequence real estate markets show signifi-

cant autocorrelation as such property returns are somewhat predictable and the random-walk 

hypothesis does not hold.9  

 

Investor’s definition of risk as the variation of returns 
 

The third assumption as to whether volatility is an appropriate measure of risk depends on the 

investor’s definition of risk.  In other words, despite the intuitive appeal and computational 

convenience of standard risk measures, the definition of risk as a positive or negative devia-

tion from an expected return is increasingly questioned.  In particular, Prospect Theory asserts 

that for many investors loss aversion is more suitable to characterise their attitude to risk than 

risk aversion per se.  Because of the high value that is typical for direct real estate investments 

and various emotional factors, this phenomenon may even be more prevalent for real estate 

investors.10  Therefore, employing volatility as a risk measure that captures upside as well as 

                                                           

4
 See, for example, Webb and Pagliari (1995), Corgel and deRoos (1999). 

5
 For an overview of various smoothing-factors that are used in practice see, for example, Hoesli et al. (2002), 

Geltner et al. (2003), Wang (2006). 
6
 See, for example, Lee and Stevenson (2006), Marcato and Key (2007), Wang (2006). 

7
 See, for example, Feldman (2003), Fourt et al. (2006), Gardner and Matysiak (2006), Fisher et al. (2007). 

8
 See, for example, Sanders et al. (1995), Maier and Herath (2009), Schindler (2010). 

9
 See, for example, Wheaton et al. (1999), Coleman and Mansour (2005). For studies that found autocorrelation 

in real estate return series see, for example, Newell and Webb (1996), Cheng et al. (2010). 
10

 See, for example, Har et al. (2005) and Bokhari and Geltner (2010) for studies that found significant loss aver-

sion among real estate investors. 
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downside potential will lead to results that are not in line with most investors’ actual under-

standing of risk. 

 

Normality of Real estate returns 
 

Finally, from a theoretical perspective volatility can only be an appropriate measure of risk if 

the direct real estate returns data is normally distributed.  However, since the mid-1980s au-

thors such as Miles and McCue (1984b) and Hartzell et al. (1986) first suggested that real 

estate returns are not normally distributed.  Hartzell et al. (1986), for example, stated that “the 

measures of skewness and kurtosis for the quarterly returns indicate that the distribution of the 

returns is not normal.”  However, these studies did not delve deeper into this issue, and it was 

not until the early 1990s that the normal distribution of direct real estate returns was funda-

mentally questioned by authors such as Myer and Webb (1992) and Liu et al. (1992).  In the 

following years various studies were published that dealt with the distribution of real estate 

returns
11

.  Following Young et al. (2006), these studies can be classified as either time-series 

analyses or cross-sectional analyses.   

 

Using data on 2,000 properties in the Russell-NCREIF Property Index between 1978 and 

1992, King and Young (1994) concluded that real estate returns are not normally distributed.  

For the same data set Young and Graff (1995) used the McCulloch’s (1986) distributional 

quantile-based estimation technique and found that annual property returns are not normally 

distributed for any calendar year during the period 1980-1992 on the cross-section of real es-

tate returns.  Given these results, the authors argue that without modification standard risk 

measures are inapplicable for direct real estate investments.  Using the same methodology 

studies in other countries support this conclusion (Young (2008) in the US, Graff et al. (1997) 

in Australia, Young et al., 2006; in the UK, and Richter et al. (2011) in Germany).  

 

Brown and Matysiak (2000) were the first to analyse return distributions of individual proper-

ties.  Based on IPD data, the authors demonstrated that monthly returns are also skewed and 

leptokurtic, i.e. the monthly data is non-normal.  However, the authors found that the return 

distributions of individual properties are much closer to being normal when using quarterly or 

annual return data or when aggregated on a portfolio or index level.  They concluded that 

“combining properties into portfolios also increases the probability that the distribution of 

returns will approach normality”. 

 

At least two studies have analysed the distribution of German real estate returns Maurer et al. 

(2004) and Richter et al., (2011).  Maurer et al. (2004) argued that the IPD index history is 

relatively short and so only allows for analyses of annual returns the authors used publicly 

available information from German open-ended real estate funds to construct a synthetic real 

estate index.  Then using the quarterly and annual returns data for the period from 01/1987 to 

12/2002 the authors analysed the distributional characteristics of German real estate market 

returns using the Jarque-Bera, the Anderson-Darling and the Shapiro-Wilk normality tests.  

The authors found that there was no evidence of non-normality in annual returns but that the 

quarterly return series differed significantly from normality.  When further accounting for 

smoothing of real estate returns as well as for inflation, they found that normality of quarterly 

and yearly returns could not be rejected in both cases.   

 

                                                           

11
 See, for example, Byrne and Lee (1997) and Young et al. (2006) for reviews. 
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Richter et al. (2011) used data from the Investment Property Databank (IPD) on 8,938 indi-

vidual German properties from 2000 to 2009 and tested the normality of total returns, capital 

returns and income returns for three property-types; retail, office and residential, using 

McCulloch’s (1986) quantile-based methodology.  The authors find that the assumption of 

normality in each return distribution can be rejected for virtually all sub-samples of all proper-

ty-types and for all years.  Nonetheless, Richter et al., (2011) note that the kurtosis values of 

the income returns were less pronounced than those for the capital returns, which the authors 

attribute to the stable nature of property income compared with capital values.   

 

In the following section we analyse individual German data similar to Richter et al. (2011), 

however, there are important differences from their study and ours.  First we use data on indi-

vidual and index data over a longer period with data from 1996 to 2009.  Second we use a 

battery of normality tests rather than one methodology: the Jarque-Bera test (J-B), the Kol-

mogorov-Smirnov test (K-S), the Lilliefors test (L), the Shapiro-Wilk test (S-W), the Ander-

son-Darling test (A-D), the Cramer-von-Mises test (C-vM) and the Watson test (W) to see if 

the results are robust to the different methods employed.  Lastly, Richter et al., (2011) argue 

that “investors can benefit from the knowledge about distribution shapes” since “[i]nvestors 

pursuing buy-and-hold strategies might need to incorporate different asset-specific risk pa-

rameters compared to opportunistic investors”, yet provide no evidence as to the distributional 

shape of German real estate returns.  Instead we use the same approach as Lizieri and Ward 

(2001) to identify the distributional shape of German real estate data.   

 

The Non-Normality of German Real Estate Returns 
 

In this section we analyse the time-series and cross-sectional distributional characteristics of 

total returns
12

 of 939 properties that have at least 10 years over the period from 1996 to 2009 

from IPD Investment Property Databank GmbH.  This sample consists of 523 office proper-

ties, 189 retail properties, 152 residential properties and 75 classified as “others”.  Due to data 

confidentiality we did not receive any information on smaller sectors such as industrial prop-

erties.  Therefore the breakdown of properties in our sample does not equal the breakdown of 

properties in the whole IPD databank when measured by number of properties; however, the 

composition is fairly similar when measured by the value. 

 

Subsequently, the time-series and cross-sectional distributional characteristics of two German 

real estate market indices were analysed in order to provide some information regarding the 

distribution of market returns.  For that purpose, BulwienGesa AG provided us with the Ger-

man Property Index (GPI) data for the period 1995-2010 and IPD with the German IPD index 

(also known as Deutscher Immobilienindex, DIX) for the period 1996-2010.  The IPD index 

is a performance index which is constructed from data delivered to IPD by institutional inves-

tors.  According to the IPD homepage the IPD index comprised of 4,281 properties with an 

appraisal value of more than €46bn at the end of 2010.  The GPI is also a performance index, 

but based on collected market data instead of individual properties.  This makes it more repre-

sentative for the whole market than the IPD index. 

 

                                                           

12
 We also examined capital growth and income returns with similar results but due to space limitations we do 

not report the results.  Full results are available upon request.   
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Time-series analysis of individual properties returns 
 

To analyse the distributional characteristics of the properties’ time-series returns, we estimated 

the average return, standard deviation (SD), skewness and kurtosis statistics of the 939 prop-

erties.  Then we performed a battery of normality tests: the Jarque-Bera test (J-B), the Kolmo-

gorov-Smirnov test (K-S), the Lilliefors test (L), the Shapiro-Wilk test (S-W), the Anderson-

Darling test (A-D), the Cramer-von-Mises test (C-vM) and the Watson test (W).  Tables 1 and 

2 provide a summary of the results. 

 
Table 1: Distributional characteristics and test statistics of total returns in the sample, 1996-2009 

 

J-B K-S L S-W A-D C-vM W

Mean 2.25% 8.58% -0.51 3.98 5.42 0.24 0.24 0.84 0.87 0.15 0.14

Min -18.78% 0.62% -3.31 1.11 0.00 0.10 0.10 0.33 0.13 0.01 0.01

Max 16.94% 64.75% 3.16 12.00 72.72 0.53 0.53 0.99 4.80 0.96 0.91

Mean 1.73% 8.47% -0.68 3.90 5.21 0.23 0.23 0.84 0.84 0.14 0.13

Min -12.00% 0.70% -3.07 1.36 0.00 0.10 0.10 0.43 0.13 0.01 0.01

Max 13.52% 45.14% 2.85 10.76 56.02 0.46 0.46 0.99 3.47 0.66 0.61

Mean 1.69% 9.33% -0.53 4.10 5.69 0.25 0.25 0.83 0.90 0.15 0.14

Min -18.78% 1.59% -3.24 1.49 0.00 0.11 0.11 0.41 0.15 0.02 0.02

Max 11.06% 64.75% 2.18 11.73 68.93 0.46 0.46 0.98 3.87 0.75 0.69

Mean 2.71% 8.01% -0.28 4.22 7.68 0.26 0.26 0.81 1.09 0.19 0.18

Min -7.81% 0.62% -3.31 1.11 0.12 0.11 0.11 0.33 0.17 0.02 0.02

Max 10.07% 21.91% 3.16 12.00 72.72 0.53 0.53 0.98 4.80 0.96 0.91

Mean 4.55% 8.31% -0.02 4.00 4.71 0.24 0.24 0.85 0.81 0.14 0.13

Min -10.89% 1.23% -2.55 1.42 0.00 0.10 0.10 0.50 0.16 0.02 0.02

Max 16.94% 26.56% 2.46 8.92 34.51 0.46 0.46 0.98 2.89 0.57 0.53

All Property

(939)

Office

(523)

Retail

(189)

Others

(75)

Residential

(152)

Kurto-

sis

TestsSector

(No. of properties)

Avg. return 

p.a.

Avg. SD 

p.a.

Skew-

ness

 
 

As can be seen from Table 1, the values of the average skewness and kurtosis measures are 

relatively close to zero and three respectively.  Furthermore, the average statistics for most 

normality tests and most property types indicate measures below the respective critical val-

ues13 hence, for the majority of return distributions, normality cannot be rejected.  This result 

is underscored by the following table that indicates the number of properties for which nor-

mality cannot be rejected at the 5% significance level. 

                                                           

13
 For an overview of critical values see, for example, D'Agostino and Stephens (1986). 
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Table 2: Number of properties in the sample with normally distributed total returns, 1996-2009

14
 

 

All Property

(939)
713 (76%) 900 (96%) 557 (59%) 528 (56%) 510 (54%) 519 (55%) 522 (56%)

Office

(523)
405 (77%) 505 (97%) 314 (60%) 304 (58%) 288 (55%) 294 (56%) 296 (57%)

Retail

(189)
140 (74%) 182 (96%) 108 (57%) 98 (52%) 101 (53%) 101 (53%) 100 (53%)

Others

(75)
53 (71%) 67 (89%) 39 (52%) 36 (48%) 36 (48%) 35 (47%) 36 (48%)

Residential

(152)
115 (76%) 146 (96%) 96 (63%) 90 (59%) 85 (56%) 89 (59%) 90 (59%)

W

TestsSector

(No. of properties) J-B K-S L S-W A-D C-vM

 
 

Table 2 shows that although the number of properties with normally distributed returns varies 

depending on the chosen test, the table indicates that for all normality tests and sectors, nor-

mality cannot be rejected in more than 50% of the cases.  Even though these results are in line 

with results of other studies that investigated annualized or annual return distributions at the 

property level, the significance of these results is questionable, due to the relatively short time 

period which does not cover a full market cycle.  

 

Cross-sectional analysis of returns 
 

In order to arrive at more meaningful results, we conducted a cross-sectional analysis to de-

termine the distributional of the total returns for each year.  A major advantage of the cross-

sectional analysis over the time-series analysis is that many more data points - up to 939 re-

turn observations in some years - are available for each distribution.  In order to employ a 

cross-sectional analysis, we followed Young et al. (2006) and assumed “that expected varia-

tions in annual property returns due to differences in property type account for all of the dif-

ferences in returns on individual properties”.  The results are presented in Table 3.  

                                                           

14
 Normality has been assessed by referring to the estimated p-value for each normality test and each return dis-

tribution. A p-value greater 5% hereby indicates that the null hypothesis of a normal distribution is unlikely to 

be rejected at the 5% significance level. 
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Table 3: Distributional characteristics and test statistics of total returns in the sample, all properties 

 

 Min. Mean  Max. J-B K-S L S-W A-D C-vM W

3,558 0.22 0.22 0.77 18.46 3.56 3.46
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

9,110 0.20 0.20 0.73 26.63 4.89 4.67
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

1,729 0.16 0.16 0.81 31.46 5.85 5.70
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

147,953 0.17 0.17 0.66 48.20 9.20 8.79
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

6,120 0.19 0.19 0.78 57.80 11.09 11.05
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

24,417 0.18 0.18 0.74 66.47 12.86 12.63
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

27,659 0.17 0.17 0.73 64.76 12.51 12.23
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

35,263 0.17 0.17 0.75 55.87 10.61 10.14
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

39,982 0.18 0.18 0.70 64.42 12.02 10.99
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

9,307 0.14 0.14 0.79 43.48 7.81 6.95
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

20,236 0.20 0.20 0.70 70.24 13.16 12.10
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

389,665 0.17 0.17 0.65 48.01 9.30 9.27
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

5,594 0.12 0.12 0.81 22.65 3.97 3.81
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

2,504 0.19 0.19 0.76 37.65 7.05 6.70
(0.00) (p < .01) (p < .01) (0.00) (0.00) (0.00) (0.00)

Year
Obser-

vations

Return p.a.

18.93-2.2312.37%57.45%2.64%

11.40%

Avg. 

SD p.a.

Skew-

ness

Kurto-

sis

-91.62%3121996

23.55-3.159.55%35.21%2.10%-69.31%4731997

11.48-0.829.38%56.28%2.96%-46.17%5561998

-5.45 73.03

2000 939 -49.73% 5.27% 64.50% 8.65% 0.49

1999 707 -126.98% 3.14% 48.00% 8.87%

2001 939 -91.98%

2002 939 -87.79% 4.03% 67.04%

15.47

4.38% 59.42% 8.55% -2.21 27.59

32.40

2004 939 -134.92% 0.18% 40.80% -3.94 33.98

8.18% -2.07 29.26

2003 939 -102.00% 2.34% 39.19% 8.78% -3.05

13.12%

-2.66 17.48

2006 905 -155.23% -1.52% 54.76% 16.02% -3.47 25.10

2005 939 -92.79% -1.42% 40.01% 11.50%

-1.84 13.21

Tests

2009 510 -77.80% 1.62% 62.98% 12.44%

-6.49 113.61

2008 608 -79.94% 2.57% 54.59% 10.93% -1.99 17.32

2007 754 -219.61% 3.04% 58.42%

 
 

With few exceptions Table 3 shows that normality can be rejected for each of the fourteen 

years.  All normality tests indicate that German total returns are not normally distributed when 

all properties are considered.  Furthermore, for each year the statistical measures indicate that 

the distributions are negatively skewed, are more peaked near the mean and have weaker 

shoulders as well as fatter tails than a corresponding normal distribution
15

.  

 

This is illustrated by the following figures which show the distribution of continuously com-

pounded returns and the QQ plot of all properties for the period 1996-2009.   

                                                           

15
  Similar distributional characteristics are apparent for the various property types but due to space limitations 

we do not report the results.  Full results are available upon request.  . 
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Figure 1: Density function of total returns of all properties in the sample, 1996-2009 
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Figure 2: QQ plot of total returns of all properties in the sample, 1996-2009 
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German real estate market return distributions 
 

Following the same approach we also analysed the distributional characteristics of the two 

major German real estate market indices: the German IPD index and the GPI by BulwienGesa 

using continuously compounded annual total returns.16  Table 4 shows that, when employing 

five different normality tests, normality could not be rejected for the IPD all property index as 

                                                           

16
 We did not correct the annual data for possible smoothing by following Coleman and Mansour (2005) who 

concluded that “the application of a statistical model to unsmooth returns - has the effect of increasing the size of 

the second moment (variance). In effect, this will widen the distribution of returns, increasing the volatility. But 

it will not, in general, transform a non-normal return distribution into a normal one.” 
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well as for the GPI index.  Also when the IPD sub-indices were analysed, normality cannot be 

rejected for all property types except for the industrial segment. 

 
Table 4: Distributional characteristics of the German IPD index (1996-2010) and the GPI index (1995-

2010) 

 

 Min. Mean  Max. J-B L A-D C-vM W

1.15* 0.14* 0.37* 0.05* 0.05*
(0.56) (> 0.1) (0.43) (0.48) (0.52)

0.93* 0.12* 0.34* 0.04* 0.04*
(0.63) (> 0.1) (0.50) (0.62) (0.64)

0.35* 0.14* 0.26* 0.05* 0.05*
(0.84) (> 0.1) (0.71) (0.58) (0.53)

1.88* 0.20* 0.56* 0.10* 0.08*
(0.39) (> 0.1) (0.15) (0.13) (0.15)

10.07 0.25 1.28 0.21 0.18
(0.01) (0.02) (0.00) (0.00) (0.01)

3.99* 0.17* 0.64* 0.10* 0.09*
(0.14) (> 0.1) (0.10) (0.11) (0.15)

1.21* 0.16* 0.46* 0.08* 0.07*
(0.55) (> 0.1) (0.26) (0.23) (0.21)

* indicates that normality cannot be rejected at a 5% significance level

-1.74 5.26

Return p.a. Tests

6.24% 1.43% -0.90 2.92

2.88%

4.48%

2.260.061.18%6.79%4.54%

-0.75%

Industrial 14 -2.94% 4.98% 7.40%

15Retail

Residential 14 1.30%

2.54%

Others

1.78-0.293.26%10.62%5.94%0.00%16GPI Index

15Office 

IPD All Prop.

3.87-1.191.33%4.93%3.43%0.05%15

-0.561.50%5.41%3.43%0.61%15

2.98% 5.64% 2.03% -0.49 2.26

2.23

Avg. SD 

p.a.

Skew-

ness

Kurto-

sis
Sector

Obser-

vations

 
 

In summary, the results of the analysis indicate that although normality cannot be rejected for 

annual German market returns, strong evidence was found that normality is likely to be re-

jected at the individual property level. These results are in line with those reported by Maurer 

et al. (2004), Morawski and Rehkugler (2006), and Richter et al. (2011).   
 

The Distributional Shape of German Real Estate Returns 
 

If real estate returns are not normal, what are they?  Very little work has been undertaken in 

order to fit more appropriate theoretical distributions to observed frequency distributions.  A 

notable exception is work of Lizieri and Ward (2001) who found out that a logistic distribu-

tion fitted best the UK real estate returns.  Following the same approach we fitted theoretical 

distributions to the observed frequency distributions of German real estate returns using 

@Risk, a Microsoft Excel add-in.   

 

a) Time-series returns of individual properties returns 

 

Using the @Risk software for the individual data showed that the logistic distribution appears 

to be the most likely theoretical distribution for direct German properties, whereas the normal 

distribution is ranked as the most likely distribution in less than 10% of the cases, see Table 

5.
17

  However, due to the small sample size, the significance of these results is questionable, 

and it is therefore necessary to conduct similar tests on a cross-sectional data set. 

                                                           

17
  The goodness of fit test and of the various property sectors produces similar results but due to space limita-

tions we do not report the results.  Full results are available upon request. 
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Table 5: Frequency of theoretical distributions to be ranked as the most likely distribution, all properties, 

1996-2009 

 

Absolut In percent Absolut In percent Absolut In percent

Logistic 394 41.96% Logistic 535 56.98% Logistic 519 55.27%

Extvalue 223 23.75% Loglogistic 134 14.27% Loglogistic 115 12.25%

BetaGeneral 106 11.29% Normal 87 9.27% Triang 66 7.03%

Triang 68 7.24% Weibull 80 8.52% Normal 60 6.39%

Expon 60 6.39% Uniform 38 4.05% Weibull 55 5.86%

Normal 29 3.09% Pearson5 17 1.81% BetaGeneral 55 5.86%

InvGauss 21 2.24% InvGauss 16 1.70% Uniform 22 2.34%

Gamma 11 1.17% Lognorm 15 1.60% Extvalue 19 2.02%

Loglogistic 9 0.96% Extvalue 11 1.17% InvGauss 11 1.17%

Weibull 8 0.85% Triang 4 0.43% Lognorm 8 0.85%

Uniform 7 0.75% Expon 2 0.21% Pearson5 5 0.53%

Pareto 2 0.21% Gamma 0 0.00% Expon 2 0.21%

Pearson5 1 0.11% BetaGeneral 0 0.00% Gamma 1 0.11%

Lognorm 0 0.00% Pareto 0 0.00% Pareto 1 0.11%

939 100.00% 939 100.00% 939 100.00%

Distributions
Frequency

Distributions
Frequency

Distributions
Frequency

Chi-Square test Anderson-Darling test Kolmogorov-Smirnov test

 
 

b) Cross-sectional returns of individual properties returns 

 

When fitting theoretical distributions to the cross-sectional return data for all properties, the 

logistic distribution was again ranked as the most likely theoretical distribution for most years 

and goodness of fit tests.  Only for 2000 did all tests suggested that the data is most likely to 

follow a log-logistic distribution, and for 2005 the Chi-Square test ranked the Weibull distri-

bution as the most likely distribution.  However, as the high test statistics as well as the p-

values below 5% for all years and all tests indicate, no theoretical distribution is likely to per-

fectly fit the empirical data for any of the years under consideration
18

.  

 
Table 6: The most likely theoretical distributions to fit the cross-sectional data, all properties, 1996-2009 

 

Rank 1 Distribution Statistic p-value Rank 1 Distribution Statistic p-value Rank 1 Distribution Statistic p-value

1996 Logistic 185.19 0.00 Logistic 7.11 < 0.005 Logistic 0.14 < 0.01

1997 Logistic 172.53 0.00 Logistic 7.58 < 0.005 Logistic 0.12 < 0.01

1998 Logistic 193.98 0.00 Logistic 13.64 < 0.005 Logistic 0.12 < 0.01

1999 Logistic 215.74 0.00 Logistic 16.18 < 0.005 Logistic 0.11 < 0.01

2000 LogLogistic 311.77 0.00 LogLogistic 23.26 N/A LogLogistic 0.12 N/A

2001 Logistic 345.93 0.00 Logistic 26.80 < 0.005 Logistic 0.12 < 0.01

2002 Logistic 350.50 0.00 Logistic 26.47 < 0.005 Logistic 0.12 < 0.01

2003 Logistic 349.51 0.00 Logistic 24.14 < 0.005 Logistic 0.13 < 0.01

2004 Logistic 303.37 0.00 Logistic 25.25 < 0.005 Logistic 0.11 < 0.01

2005 Weibull 218.37 0.00 Logistic 17.40 < 0.005 Logistic 0.10 < 0.01

2006 Logistic 285.76 0.00 Logistic 27.23 < 0.005 Logistic 0.12 < 0.01

2007 Logistic 179.72 0.00 Logistic 13.83 < 0.005 Logistic 0.11 < 0.01

2008 Logistic 56.58 0.00 Logistic 5.29 < 0.005 Logistic 0.07 < 0.01

2009 Logistic 184.60 0.00 Logistic 15.94 < 0.005 Logistic 0.14 < 0.01

Year
Chi-Square test Anderson-Darling test Kolmogorov-Smirnov test

 
 

                                                           

18
  Similar results were obtained when individual sub-sectors are analysed but due to space limitations we do not 

report the results.  Full results are available upon request. 
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c) German real estate market return distributions 

 

Finally we examined the theoretical distribution of the real estate market return data.  The 

results are presented in Table 7.  

 
Table 7: The most likely theoretical distributions to fit the German market return data 

 

Rank 1 Distribution Statistic p-value Rank 1 Distribution Statistic p-value Rank 1 Distribution Statistic p-value

IPD All prop. Logistic 0.00 1.00 Logistic 0.32 > 0.25 Triang 0.11 N/A

Office Weibull 0.00 1.00 Weibull 0.24 N/A Logistic 0.11 > 0.1

Retail InvGauss 0.40 0.82 Normal 0.25 > 0.25 Normal 0.14 > 0.15

Residential Logistic 0.57 0.75 Logistic 0.45 > 0.1 Triang 0.17 N/A

Industrial Logistic 1.00 0.61 Logistic 0.83 < 0.05 Logistic 0.20 > 0.05

Others Logistic 0.40 0.82 Logistic 0.43 > 0.1 Logistic 0.13 > 0.1

GPI Index Triang 0.88 0.65 Weibull 0.43 N/A Weibull 0.15 N/A

Sector
Chi-Square test Anderson-Darling test Kolmogorov-Smirnov test

 
 

In line with the results by Lizieri and Ward (2001), the Chi-Square statistic as well as the An-

derson-Darling test suggest that the logistic distribution is most likely to be the best fit for the 

all property index and most appropriately fits the sub-indices for residential, industrial and 

other properties. According to Lizieri and Ward (2001) this might be due to the high propor-

tion of returns that are close to zero which “is a result of the thinly traded market and slow 

arrival of information, resulting in static individual valuations.” Slightly different results can 

be obtained using the Kolmogorov-Smirnov test which ranks the triangular distribution as the 

best fit for the all property index. In contrast, the Weibull distribution best fits the GPI Index 

according to the Anderson-Darling and the Kolmogorov-Smirnov test while the Chi-Square 

test suggests that a triangular distribution is the best fit for this index. 

 

In summary, the findings are somewhat inconclusive as to the ‘true’ distributional shape of the 

German real estate index data.  Nonetheless, it appears that German real estate returns are 

closer to a logistic distribution than to a normal distribution.   

 

Conclusions and Implications  
 

This paper has examined whether volatility is an appropriate measure of risk in the direct real 

estate market from a theoretical and empirical perspective.  On theoretical grounds we argue 

that volatility cannot be considered an appropriate, or coherent, measure of risk.  Of course it 

is not completely without use, but it may yield erroneous results when used for risk control, 

constructing portfolios or other purposes.  Secondly, several fundamental assumptions for the 

use of volatility as a risk measure do not apply in the direct real estate context.  In particular 

our study of German individual and market data, as well as other studies, find that the as-

sumption of normality does not hold for direct real estate returns.  In fact a logistic function 

can better describe the distribution of real estate returns.  Furthermore, there is growing evi-

dence that the definition of risk as the variation of returns does not comply with the common 

understanding of risk of most investors. Accordingly, many real estate professionals and aca-

demics regard downside risk measures as more appropriate.19  Nonetheless, a review of the 

real estate literature review reveals that volatility is still widely used for measuring the risk of 

real estate market data.  Furthermore, the downside risk measures are not without their prob-

lems. For instance, although downside risk measures better fit with investor’s view of risk as 

                                                           

19
 See, for example, Sivitanides (1998), Sing and Ong (2000), Byrne and Lee (2004), Hamelink and Hoesli 

(2004), Morawski and Rehkugler (2006).  
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an aversion to losses almost all fail one or more of the axioms that risk measures should satis-

fy to be a coherent measure of risk, are typically difficult to interpret and/or are difficult to 

implement in practice.   

 

For instance, value at risk (VaR), which is a standard risk measure in banking, relies on nor-

mally distributed returns and does not satisfy the axiom of subadditivity defined by Artzner et 

al. (1999) hence; it is not a coherent risk measure.  Furthermore, while the modified value at 

risk (MVaR), suggested by Signer and Favre (2002), overcomes the problem of non-normal 

returns in calculating the VaR by penalizing assets with negative skewness and excess kurto-

sis; it is incoherent as well.  In addition, as Lee (2007) points out, the MVaR is difficult to use 

on prospective future returns because various scenarios have to be simulated for a non-normal 

return-generating process.  In contrast, the conditional value-at-risk (CVaR), which is defined 

for a confidence level α as the negative expected value in the worst α * 100% cases, is a co-

herent risk measure, but it is difficult to interpret (Booth et al., 2002). 

 

Since no singular quantitative figure seems to satisfy all requirements it could be useful to 

shift the focus to a set of risk measures which - in combination - yields a more comprehensive 

picture of the riskiness of an investment and better reflects the subjective risk preferences of 

the investor (Booth et al., 2002).  Useful as this may be, to our knowledge none of them is 

widely used in the field of real estate or object of further research. 

 

A different approach is the use of qualitative risk measures such as scores, ratings, or scenari-

os.  Although the academic literature on this topic is limited,20 great progress was made in the 

industry in the last decade, mainly due to the huge effort that financial institutions had to put 

into their rating systems in order to comply with the rules of Basel II.  

 

For instance, in the UK, the Investment Property Forum and the Investment Property Data-

bank issued a report in 2000 in which they emphasized the need for more powerful risk as-

sessment measures that match the complexity of properties (IPD, 2000).  Following this re-

port, Hutchison et al. (2005) put forward an alternative approach for the reporting of real es-

tate quality risk.  In the first phase of their research, the authors applied a scoring technique to 

estimate the risk of failure over the next three to twelve months.  Subsequently, an Analytic 

Hierarchy Process (AHP) was used in order to calibrate the scoring method to various proper-

ty-specific factors.  The last phase included discussions with focus groups and clearly indicat-

ed that bankers, valuers and investors welcome attempts to enhance reporting of investment 

quality risk.   

 

A similar approach was suggested by Blundell et al. (2011) who updated the earlier work of 

Blundell et al. (2005).  The authors argued that portfolio risk should be depicted in terms of 

scores for various factors that were believed to influence overall risk, e.g., asset concentration, 

vacancy rate, lease length, etc. The so-called Risk Web included thirteen factors that “did ap-

pear to exercise a statistical influence over portfolio risk, with levels of correlation that were 

far superior to that of prior portfolio volatility”.  But according to the authors, this Risk Web 

is more suitable to the properties’ intrinsic characteristics than applications used by conven-

tional capital market theory.  Nonetheless, this and similar approaches seem to be a promising 

alternative because they combine the advantages and softens the disadvantages of both meth-

                                                           

20
 For literature on qualitative approaches in real estate risk measurement see, for example, Goodman and Scott 

(1997), Gordon (2003), Hutchison et al. (2005), Adair and Hutchison (2005), Lausberg and Wiegner (2009), and 

Chen and Khumpaisal (2009).  
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ods, for instance, the Global Real Estate Risk Index by Chen and Hobbs (2003) and the Ex-

tended Risk Rating (ERR) by Bürkler and Hunziker (2008).  This latter approach measures 

the ex ante risk of various asset classes using various risk indicators such as maximum draw-

down, deviation from normality, and recovery potential.  The risk for each category is then 

assessed, and the overall risk can be expressed when combining the individual measures.  

 

A more recent approach is that of Lausberg and Wiegner (2009) which combines a number of 

quantitative and qualitative elements and has been successfully employed by a group of Euro-

pean banks for their commercial real estate loans.  Here, for example, a quantitative cash flow 

model measures the downside risk of a property while a scoring measures the location quality 

based on the analyst’s opinion; then both are combined to determine the borrower’s probabil-

ity of default.  We believe that this type of rating constitutes the state of the art for qualitative 

risk management in the real estate industry because it had to be developed on a sound empiri-

cal basis with accepted statistical methods due to the strict requirements of Basel II (Lausberg 

and Wiegner, 2009). The aforementioned rating system has not only survived the world finan-

cial crisis, but it has achieved an extremely high reliability because it is trained with hundreds 

of new data sets each year.  

 

In our view such approaches will need to be expanded in the future with the tightening in reg-

ulation, the increase in the professionalization of the industry, and improvements in data 

quality.  Furthermore, we expect that volatility will not be followed by another “one-size-fits-

all” super measure, but instead by several systems which integrate various risk measures in 

various ways depending on such factors as investor’s understanding for and attitude towards 

risk, the purpose of measuring risk, and the availability of property data. 
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